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University of California, Berkeley
Physics 105 Fall 2000 Section 2 (Strovink)

SOLUTION TO PROBLEM SET 2
Solutions by T. Bunn and M. Strovink

Reading:
105 Notes 2.1, 2.2, 2.3, 2.4, 2.5.
Hand & Finch pp. 10-12, 130-134, 284-285.

1.
A comet, barely unbound by the sun (its to-
tal energy vanishes), executes a parabolic orbit
about it.

At a certain time the comet has speed v and im-
pact parameter b with respect to the sun. You
may neglect the comet’s mass m with respect to
the sun’s mass M . Find the perigee (distance of
closest approach to the sun) of the comet.
Solution:
At the initial time, the angular momentum is

l = |r× p| = mvr| sin θ| = mvb ,

where θ is the angle between r and v, and
b ≡ r| sin θ|. At the perigee, l = mvprp, where vp

and rp are the velocity and radius there. So, by
angular momentum conservation, vp = vb/rp.

What about energy? As the problem states, a
“barely bound” orbit is one with zero total en-
ergy, i.e. with kinetic energy exactly balancing
potential energy. So we can set the energy at
the perigee equal to zero:

1
2mv2

p − GMm

rp
= 0 .

Substitute for vp:

v2b2

2r2p
=

GM

rp
.

Solving for rp,

rp =
v2b2

2GM
.

2.
Two masses m1 and m2 orbit around their com-
mon center of mass (CM), which has the coordi-
nate R(t). They are separated from the CM by
r1(t) and r2(t), respectively. Define

r ≡ r1 − r2

µ ≡ m1m2

m1 +m2
,

where µ is the reduced mass.
(a)
Show that the total kinetic energy T = T1 + T2

is equal to

T = 1
2µṙ

2 + 1
2MṘ2 ,

where M = m1 +m2.
Solution:
First let’s get what we can out of the definition
of the CM:

r ≡ r1 − r2
0 ≡ m1r1 +m2r2

⇒ r1 = +r
m2

m1 +m2

r2 = −r m1

m1 +m2
.



2

Using these results to evaluate the kinetic energy,

T = Tof CM + Twrt CM

Tof CM = 1
2MṘ2

Twrt CM = 1
2m1ṙ21 +

1
2m2ṙ22

=
ṙ2

2(m1 +m2)2
(m1m

2
2 +m2m

2
1)

=
ṙ2

2(m1 +m2)
m1m2

≡ 1
2µṙ

2

T = 1
2MṘ2 + 1

2µṙ
2 .

(b)
About the CM, show that the total angular mo-
mentum L = L1 + L2 is equal to

L = µr× ṙ .

Solution:
Here we are concerned only with the angular
momentum about the CM.

L = L1 + L2

L1 = m1r1 × ṙ1
L2 = m2r2 × ṙ2 .

Using the results from part (a) for r1 and r2,

L =
m1m

2
2

(m1 +m2)2
r× ṙ+

m2m
2
1

(m1 +m2)2
r× ṙ

=
m1m2(m1 +m2)

(m1 +m2)2
r× ṙ

=
m1m2

(m1 +m2)
r× ṙ

≡ µr× ṙ .

The simplicity of these formulæ explains why the
two-particle separation r and the two-particle re-
duced mass µ are usually chosen as parameters
for analysis of the two-body problem.

3.
Two particles connected by an elastic string of
stiffness k and equilibrium length b rotate about
their center of mass with angular momentum l.

Show that their distances of closest and furthest
approach, r1 and r2, are related by

r21r
2
2(r1 + r2 − 2b) = (r1 + r2)l2/kµ ,

where µ = m1m2/(m1 +m2) is the two-body re-
duced mass.
Solution:
Remember that a problem with two bodies and a
central force can always be treated as a one-body
problem: Just replace the mass by the reduced
mass µ, and use the separation r between the
bodies as your coordinate. Generically, if r is
the distance from the origin and ω is the angu-
lar velocity, then the angular momentum l and
energy E are

l = µωr2

E = 1
2µṙ

2 + 1
2µ(rω)

2 + 1
2k(r − b)2 ,

where the last term is the potential energy in
the stretched string. Let’s use the equation for l
to eliminate ω:

E =
1
2

(
µṙ2 +

l2

µr2
+ k(r − b)2

)
.

When r is an extremum (at r1 and r2), ṙ = 0,
so, setting the energies at r1 and r2 equal, and
doing some algebra, we get

l2

µr21
+ k(r1 − b)2 =

l2

µr22
+ k(r2 − b)2

l2(r22 − r2
1)

µr21r
2
2

= k
(
(r2 − b)2 − (r1 − b)2

)

r21r
2
2(r1 + r2 − 2b) =

l2

kµ
(r1 + r2) .

4.
Determine which of the following forces are con-
servative, and find the potential energy (within
a constant) for those which are:
(a)

Fx = 6abyz3 − 20bx3y2

Fy = 6abxz3 − 10bx4y

Fz = 18abxyz2 .

Solution:
Remember that Fx = −∂U/∂x, and similarly
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for Fy and Fz. So (if appropriate constants
of integration are chosen) U = − ∫

Fx dx =
− ∫

Fy dy = − ∫
Fz dz. If those three integrals

aren’t equal, then F can’t be derived from a po-
tential, and is not conservative. An equivalent
statement is that F is conservative if and only
if all the “mixed derivatives” are equal (i.e., if
∂Fx

∂y = ∂Fy

∂x , ∂Fx

∂z = ∂Fz

∂x , and ∂Fy

∂z = ∂Fz

∂y ). “Equal
mixed derivatives” is the same as “zero curl”.

For part (a), if you work out all the mixed
derivatives, you find that they are all OK (so the
force is conservative). However, since we have to
find U anyway, we’ll just do the integrals:

U = −
∫

Fx dx

= −(6abxyz3 − 5bx4y2 +A(y, z))

= −
∫

Fy dy

= −(6abxyz3 − 5bx4y2 +B(x, z))

= −
∫

Fz dz

= −(6abxyz3 + C(x, y)) ,

where A, B, and C are integration constants.
(Note that they only have to be constant with
respect to the variable of integration.) We can
see that if we set A = B = 0, and C = −5bx4y2,
we’ve got it. So

U = −6abxyz3 + 5bx4y2 .

(b)
Fx = 18abyz3 − 20bx3y2

Fy = 18abxz3 − 10bx4y

Fz = 6abxyz2 .

Solution:
This force is not conservative. It can’t be, be-
cause ∂Fx

∂z �= ∂Fz

∂x :

∂Fx

∂z
= 54abyz2 , but

∂Fz

∂x
= 6abyz2 .

(c)
F = x̂F1(x) + ŷF2(y) + ẑF3(z) .

Solution:
This force is conservative, since all mixed deriva-
tives are equal (in fact, they’re all zero). The
potential is

U = −
∫

F1(x) dx−
∫

F2(y) dy −
∫

F3(z) dz .

5.
A vector field F is expressed in cylindrical coor-
dinates as follows:

Fr = 0
Fϕ = k/r

Fz = 0 ,

where k is a constant.
(a)
When r > 0, show that F has zero curl.
Solution:
Transforming F to Cartesian coordinates,

Fz = 0
Fx = Fr cosϕ− Fϕ sinϕ

= 0− k
r sinϕ

=
kr sinϕ

r2

= − ky

x2 + y2
.

Similarly

Fy = +
kx

x2 + y2
.

Obviously (∇× F)x = (∇× F)y = 0 because F
has no z component and no z dependence. The
surviving component is

(∇× F)z =
∂Fy

∂x
− ∂Fx

∂y

=
k

x2 + y2
− 2kx2

(x2 + y2)2
+

+
k

x2 + y2
− 2ky2

(x2 + y2)2

=
2k

x2 + y2
− 2k(x2 + y2)

(x2 + y2)2

=
2k

x2 + y2
− 2k

(x2 + y2)
= 0 provided r �= 0 .
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Notice that the final two terms can be consid-
ered to cancel only away from r = 0, where their
denominators vanish and the terms themselves
are infinite.
(b)
Consider the loop integral

∮
F · dl counterclock-

wise around a circular path of fixed radius R.
What is the value of this integral?
Solution:
Working in cylindrical coordinates,∮

F · dr = 2πRFϕ(R)

= 2πk > 0 .

(c)
Can F be derived from a single-valued potential
U , e.g. F = −∇U where U = U(r, ϕ, z)? Why
or why not?
Solution:
If it were true that F = −∇U , then∮

F · dr =
∮

(−∇U) · dr
= −U0 + U0

= 0 ,

where U0 is the single value of U at the start-
ing (and ending) point of the loop integral. This
condition is not satisfied from (b), so it is not
true that F = −∇U even though, as shown in
part (a), ∇× F = 0 at finite r.

6.
A hoop of radius b and mass m rolls without
slipping within a circular hole of radius a > b.
About the center of the hole, the point of contact
has a uniform angular velocity ωa.

(a)
Find the angular velocity ωb of the hoop about
its own center (magnitude and direction).
Solution:
Imagine for a moment that the hoop is moving
while fully slipping, i.e. imagine that the same
point on the hoop always makes contact with
the hole. In one counterclockwise (CCW) rev-
olution of the point of contact, the hoop would
also undergo one CCW revolution.

Now back to the real problem. Take the hoop
to be rolling without slipping. In one revolu-
tion of the point of contact, the point of contact
moves a distance 2πa along the circumference of
the hole. Since the circumference of the hoop is
smaller, 2πb instead of 2πa, the fact that it is
rolling causes the hoop to rotate clockwise by an
extra number of revolutions equal to 2πa/2πb.

Putting the above arguments into an equation,
considering the CCW direction to be positive,

ωb = +ωa − a

b
ωa .

Here the first term on the RHS is the angular ve-
locity that would result from full slipping, while
the second term results from the extra revolu-
tions of the hoop due to rolling without slipping.
Simplifying,

ωb = −(a
b − 1)ωa .

(b)
Calculate the kinetic energy T of the hoop.
Solution:
This is a straightforward application of a decom-
position rule: the total kinetic energy T is the
sum of the kinetic energy Tof CM of the CM and
the kinetic energy Twrt CM with respect to the
CM. Applying it,

T = Tof CM + Twrt CM

= 1
2m(a− b)2ω2

a + 1
2mb2ω2

b

= 1
2mω2

a

(
(a− b)2 + b2(a

b − 1)2
)

= mω2
a(a− b)2 .
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In the second line above, we used the fact that
the radius of the circle described by the motion
of the CM of the hoop is a− b.
(c)
Obtain the angular momentum L (magnitude
and direction) of the hoop relative to the center
of the hole.
Solution:
Again this is a straightforward application of a
decomposition rule, this time for angular mo-
mentum instead of kinetic energy. Applying it,
taking the positive direction of L to be out of
the paper,

L = Lof CM + Lwrt CM

= (a− b)2ωa +mb2ωb

= mωa

(
(a− b)2 − b2(a

b − 1)
)

= mωa(a2 − 2ab+ b2 − ab+ b2)

= mωa(a2 − 3ab+ 2b2)
= mωa(a− b)(a− 2b) .

(d)
Consider your answers to (b) and (c) in the limit
b → a. You should find that both T and L van-
ish. Is this reasonable? Why or why not?
Solution:
Both T and L contain the factor (a− b), and so
they vanish as b approaches a. (Amusingly, L
also vanishes when b = a/2.) This is perfectly
reasonable. Both T and L must vanish in the
limit a → b; in this limit, the point of contact
rotates without the hoop moving at all!

7.
Consider a spherically symmetric distribution
ρ(r) of mass density. If the gravitational ac-
celeration, or “gravitational field vector” g, is
known to be independent of the radial coordi-
nate r within a spherical volume, find ρ(r) to
within a multiplicative constant.
Solution:
Remember: The gravitational acceleration due
to the mass of a spherical shell vanishes if you
are inside the shell. But if you are outside the
shell, then the acceleration is the same as if the
mass were all concentrated at the center. In
our case, this means that you can find the ac-
celeration g at any distance r from the origin by

considering only the mass lying at distance less
than r from the origin:

g(r) =
GM<r

r2

=
G

r2

∫ r

0

ρ(r′) d3x′

=
4πG
r2

∫ r

0

ρ(r′)r′2 dr′ .

Now, if we want g to be a constant, then we
need the integral in this equation to be pro-
portional to r2 (to cancel the 1/r2). If the
integral is proportional to r2, then the integrand
is proportional to r. So

r2ρ(r) = kr where k is a constant
ρ = k/r .

Therefore ρ is proportional to 1/r. (The con-
stant k is g/2πG, in case you’re interested.)

8.
Consider a point mass that lies outside a spheri-
cal surface. Let φ(r) be the gravitational poten-
tial due to the point mass.

Show that the average value of φ taken over the
spherical surface is the same as the value of φ
at the center of the sphere. [Since the potential
due to an arbitrary mass distribution is the sum
of potentials due to point masses, this statement
is also true for the gravitational potential due
to an arbitrary mass distribution lying outside a
spherical surface.]
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Solution:
Let a be the distance from the origin to the
point mass, and R the radius of the sphere. The
average of φ over the surface of the sphere is the
integral over the whole surface divided by the
surface area: 〈φ〉 = 1

4πR2

∫
sphere

(−GM/r) dA.
By the law of cosines,

r =
√
a2 +R2 − 2aR cos θ ,

and of course the surface area element of the
sphere is dA = R2 sin θ dθ dϕ, where ϕ is the
“longitudinal” angle around the surface of the
sphere.

〈φ〉 = −GM

4π

∫ 2π

0

dϕ

∫ π

0

sin θ dθ√
a2 +R2 − 2aR cos θ

u ≡ cos θ

〈φ〉 = −1
2GM

∫ 1

−1

du√
a2 +R2 − 2aRu

=
GM

2aR

[√
a2 +R2 − 2aRu

]1

−1

= −GM

2aR

(√
(a+R)2 −

√
(a−R)2

)

= −GM

2aR
2R

= −GM

a
.

−GM/a is the value of the potential at the
center of the sphere, so we’ve shown what we
intended to.


